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Hydroxylation mediates chromatin demethylation
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Methylation of DNA and histones in chromatin has
been implicated in numerous biological processes.
For many years, methylation has been recognized as
static and stable modification, as compared with other
covalent modifications of chromatin. Recently, however,
several mechanisms have been demonstrated to be
involved in demethylation of chromatin, suggesting
that chromatin methylation is more dynamically
regulated. One chemical reaction that mediates
demethylation of both DNA and histones is hydroxyl-
ation, catalysed by Fe(II) and a-ketoglutarate
(KG)-dependent hydroxylase/dioxygenase. Given that
methylation of chromatin is an important epigenetic
mark involved in fundamental biological processes
such as cell fate determination, understanding how
chromatin methylation is dynamically regulated has
implications for human diseases and regenerative
medicine.
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Abbreviations: 5caC, 5-carboxylcytosine; 5fC,
5-formylcytosine; 5hmC, 5-hydroxymethylcytosine;
5mC, 5-methylcytosine; AID, activation-induced
cytidine deaminase; AML, acute myeloid leukaemia;
AP, apurinic/apyrimidinic; APE1, AP endonuclease 1;
APOBEC1, apolipoprotein B mRNA editing enzyme,
catalytic peptide 1; ARID, AT-rich interactive
domain; ARID5, ARID-containing protein 5; BER,
base excision repair; C5-MTases, DNA
cytosine-5-methyltransferases; CGI, CpG islands;
CKO, conditional knockout; CMML, chronic
myelomonocytic leukaemia; CMV, cytomegalovirus;
CTCF, CCCTC-binding factor; CYP27B1, cyto-
chrome p450 27B1; ChIP, Chromatin immuno-
precipitation; DME, DEMETER; DML,
DEMETER-like protein; DNMT, DNA methyltras-
ferase; EGFP, enhanced green fluorescent protein;
ESC, embryonic stem cell; FAD, flavin adenine
dinucleotide; GADD45, growth arrest- and DNA
damage-inducible 45; HKMT, histone lysine methyl-
transferase; hmeDIP-seq, hydroxymethylated DNA
immunoprecipitation followed by next-generation
sequencing; IAP, intracisternal A-particle; JBP,
J-binding protein; JHDM, JmjC domain-containing

histone demethylase; JmjC, Jumonji-like domain C
terminus; KDM, lysine demethylase; KG, ketogluta-
rate; Kme1, monomethyllysine; Kme2, dimethylly-
sine; Kme3, trimethyllysine; LSD1, lysine-specific
demethylase 1; MBD, methyl-CpG-binding domain
(protein); MBT, malignant brain tumour; MDS,
myelodysplastic syndromes; MEF, mouse embryonic
fibroblast; MLL, mixed lineage leukaemia; MPN,
myeloproliferative neoplasm; NER, nucleotide exci-
sion repair; PARP1, poly (ADP-ribose) polymerase 1;
PGC, primordial germ cell; PHD, plant homeo
domain; PHF2, PHD finger 2; PRC2, polycomb re-
pressive complex 2; PRMT, protein arginine methyl-
transferase; RBP2, retinoblastoma binding protein 2;
ROS1, repressor of silencing 1; Rme1, monomethy-
larginine; Rme2as, dimethylarginine (asymmetric);
Rme2s, dimethylarginine (symmetric); SAH,
S-adenosylhomocysteine; SAM,
S-adenosylmethionine; sAML, secondary AML; SET,
Su(var)3-9/Enhancer of zeste/Trithorax; SRA, SET
and RING-associated; SSB, single-strand break;
SUMG1, single strand uracil DNA glycosylase;
SUMO, small ubiquitin-like modifier; TDG, thymine-
DNA glycosylase; TET, Ten-Eleven-Translocation;
TPR, tetratricopeptide repeat; UHRF1, ubiquitin-like
protein containing PHD and RING finger domains 1;
UTX, ubiquitously transcribed TPR gene on X
chromosome; UV, ultraviolet; WDR5, WD
repeat-containing protein 5; XPG, xeroderma pig-
mentosum group G-complementing protein; XRCC1,
X-ray repair complementing defective repair in
Chinese hamster cells 1; ZF, zinc finger.

The term ‘epigenetics’ has historically been used to
describe events that could not be explained by genetic
principles (1). More recently, the term has come to
refer to a collection of phenomena and mechanisms
that define stably heritable phenotypes that result
from changes to chromosomes without alterations in
DNA sequence (1, 2). One phenomenon that illustrates
the importance of epigenetics is cellular differentiation.
A multicellular organism consists of diverse types of
cells that share an identical genotype (with some
exceptions such as immune system cells). Despite
their identical genotype, the cells of the body have
distinct cellular phenotypes and functions that are
attributable to the differences between their gene-
expression profiles. The molecular mechanisms
underlying these epigenetic phenomena involve a
range of chromatin modifications including covalent
modification of chromatin, non-covalent mechanisms F
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such as chromatin remodelling and the incorporation
of histone variants, non-coding RNA and higher order
chromatin reorganization. Chromatin is a complex of
DNA, histones and non-histone proteins. The basic
building block of chromatin is the nucleosome, a struc-
ture consisting of an octamer of four histone proteins
(two copies each of H2A, H2B, H3 and H4) around
which 147 bp of DNA is wrapped in 1.75 superhelical
turns (3). The covalent modifications of chromatin
include DNA methylation and post-translational
modifications of histones (acetylation, phosphoryl-
ation, ubiquitination, small ubiquitin-like modifier
(SUMO)-ylation and methylation); all of these can
influence overall chromatin structure. Among these
covalent modifications of chromatin, methylation has
been considered static and enzymatically irreversible,
although most other modifications are controlled by
a balance between enzymes that catalyse the addition
and removal of a given modification. Nonetheless, sev-
eral potential mechanisms of chromatin demethylation
have been suggested. One such mechanism, hydroxyl-
ation of methyl groups, turns out to be utilized in
both histone and DNA demethylation; a number of
enzymes involved in this mechanism have been
identified. In this review, I survey the mechanisms of
regulation of chromatin methylation, specifically the
mechanisms of hydroxylation-mediated chromatin
demethylation, and describe recent advances in our
understanding of these processes.

Chromatin methylation

Chromatin methylation involves the covalent addition
of a methyl group to histones and DNA. It is a
common epigenetic modification in most eukaryotes,
and plays a fundamental role in epigenetic phenomena,
in concert with other chromatin modifications.

Histone methylation
Histone methylation occurs on both lysine and argin-
ine residues. Lysine methylation involves the covalent
addition of methyl group(s) to the nitrogen atom of
the lysine "-amino group. The first report of the occur-
rence of methyllysine in histone proteins was made
50 years ago, in a study demonstrating the presence
of "-N-methyl-lysine in calf thymus histones (4).
The methylated histones were revealed to be a product
of a post-translational side-chain modification reac-
tion involving S-adenosylmethionine (SAM) (5, 6).
Subsequent studies established the presence of
"-N-dimethyllysine (Kme2) and "-N-trimethyllysine
(Kme3) in histones, in addition to "-N-monomethylly-
sine (Kme1) (7, 8). Thus, by 1968, it was established
that lysine methylation can assume three states
(mono-, di- and tri-methylation) (9).

The first histone lysine methyltransferase (HKMT)
to be identified was SUV39H1, which targets histone
H3 lysine 9 (H3K9) (10). Since that discovery, a
number of HKMT have been identified. These
enzymes belong to two classes of methyltransferase
families: the Su(var)3-9/Enhancer of zeste/Trithorax
(SET) domain�containing family, and the non-SET

domain proteins DOT1/DOT1L (11�13). Both
families of enzymes catalyse the transfer of a methyl
group from SAM to the "-amino group of lysine,
resulting in S-adenosylhomocysteine (SAH) and
methyllysine. The majority of HKMTs belongs to the
SET family; these proteins have in common the
SET domain as their catalytic core. The SET
domain-containing family of enzymes has very specific
substrate specificity with respect to methylation site
and state, and acts almost exclusively near the
amino-termini of histone proteins. On the other
hand, DOT1/DOT1L do not contain a SET domain,
and methylate H3K79, which falls within the globular
domain of histone H3. The structural differences
between these two types of enzymes might reflect
differences in the accessibility of their substrates.

In general, protein arginine methylation involves the
addition of methyl group(s) to the terminal nitrogen
atoms of the arginine guanidino group. The first report
of chromatin arginine methylation was made in
1970, in a study demonstrating the presence of
o-N-methylarginine (NG-methylarginine) in histone
proteins (14); earlier work in the late 1960s had
set a precedent for this result by demonstrating that
proteins (including histones) could be methylated on
arginine by enzymes in vitro. Three main forms
of methylated arginine have been identified in
eukaryotes: NG-monomethylarginine (Rme1),
NG,NG-dimethylarginine (asymmetric, Rme2as) and
NG,N0G-dimethylarginine (symmetric, Rme2s).
Histone arginine methylation takes these forms as
well (15).

Since the discovery of the first mammalian protein
arginine methyltransferase (PRMT) (16), 11 proteins
have been suggested to be a PRMT. These proteins
fall into two classes: PRMT1�9, which share a
common binding motif for the SAM co-factor, a
seven-strand twisted b-sheet; and Fbox-only proteins,
which do not harbour this signature motif (15, 17).
PRMTs transfer a methyl group from SAM to a ter-
minal guanidino nitrogen of arginine, producing SAH
and methylarginine. According to their methylation
products, the PRMT1�8 enzymes have been further
classified into two subclasses, type I and type II.
The type-I enzymes generate Rme1 and Rme2as,
whereas the type-II enzymes generate Rme1 and
Rme2s. PRMT9(4q31) and two Fbox-only family
members, FBXO10 and FBXO11, have been suggested
to be PRMTs, but further study is necessary in order to
conclusively determine whether these proteins possess
arginine methyltransferase activity. With respect to
histones, the relevant enzymes are PRMT1, 2, 4, 5, 6
and 7, which target multiple arginine residues on
histones; however, their substrate specificity has not
been as well characterized as that of lysine
methyltransferases.

Histone methylation participates in a diverse
range of biological processes including heterochroma-
tin formation, X-chromosome inactivation, and
transcriptional regulation (12, 13, 18). The most
well-studied histone lysine methylation marks are on
H3K4, K9, K27, K36, K79 and H4K20. Histone lysine
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methylation can signal either activation or repression
of gene expression, depending on the particular lysine
residues that are methylated (11, 13, 19). Even within
the same lysine residue, the biological consequences
can differ depending on the methylation state,
i.e. whether it is mono-, di-, or tri-methylated (20,
21). To complicate matters, the same methylation
state can result in opposite functional outcomes
depending on how the modification is read and
translated in a specific context (22). Histone arginine
methylation occurs on H3 arginine 2 (R2), R8, R17,
R26 and H4R3, and plays roles in defining both
active and repressed chromatin states as well as
lysine methylation (23).

Covalent histone modifications can influence
chromatin structure, either directly or indirectly.
Acetylation and phosphorylation alter the electrostatic
properties of modified residues and structural inter-
actions within the nucleosome, thereby leading to
changes in chromatin structure (24�26). In contrast,
methylation of lysine and arginine residues does not
alter their charge, and there is no evidence that lysine
methylation directly affects chromatin dynamics.
However, effector-mediated functions have been well
documented. Histone methylation recruits or stabilizes
the localization of effector proteins that elicit function-
al outcomes. Thus far, proteins containing specific
motifs (chromodomain, tudor domain, malignant
brain tumour (MBT) domain, PWWP domain,
WD40-repeat domain, plant homeo domain (PHD)
and ankyrin repeats) have been demonstrated to inter-
act with methylated histones, and to mediate their
downstream effects through alteration of chromatin
structure (27). Histone methylation also prevents the
binding of proteins to chromatin. H3K4me and
H3R2me2as block the binding of DNA methyltrans-
ferase (DNMT) 3A/3L to H3 and that of WD repeat
containing protein 5 (WDR5) to H3, respectively,
suggesting that histone methylation mediates down-
stream effects by the negative regulation of protein
interactions with chromatin (28�30).

DNA methylation
DNA methylation, as an epigenetic mark of chroma-
tin, involves the covalent addition of a methyl group to
the C-5 position of cytosine (C); however, other forms
of methylation also exist (N-4 position of cytosine and
N-6 position of adenine, etc.). The first descriptions of
this ‘fifth base’ (5-methylcytosine, 5mC) in DNA were
by Hotchkiss in 1948 (31) and Wyatt in 1951 (32).
Hotchkiss noted that DNA of calf thymus contains
a cytosine-like component (‘epicytosine’) whose ultra-
violet (UV) spectrum and chromatographic behaviour
led him to suggest that it might be 5mC. Wyatt isolated
5mC from calf thymus DNA and identified its
structure by comparison with synthetic 5mC. In
mammalian cells, 5mC accounts for �1% of all
DNA bases (33). DNA methylation in mammals
occurs predominantly in the context of symmetric
CpG dinucleotides (�80% of all CpG dinucleotides
are methylated) (33); a certain amount of non-CpG
methylation is detected in embryonic stem cells

(ESCs) (�20% of total 5mC) and in oocytes (34�37).
In contrast, DNA methylation in plants can occur at
cytosine in diverse sequence contexts (38). Genomic
DNA methylation is found throughout the genome;
in mammalian cells, short regions enriched in
unmethylated CpG dinucleotides are termed ‘CpG
islands’ (CGI) (35).

The enzymes responsible for this post-synthetic
modification are the DNMTs, conserved and well
characterized in mammals and plants. After the discov-
ery of first DNMT, DNMT1 (39), five mammalian
DNMTs (DNMT1, DNMT2, DNMT3a, DNMT3b
and DNMT3L) have been identified; though
DNMT2 and DNMT3L have not been demonstrated
to possess significant DNMT activity. DNMTs fall
into two general classes: de novo and maintenance
DNMTs (40). Both classes of enzymes catalyse the
transfer of a methyl group from SAM to the C-5
position of C in DNA, yielding SAH and 5mC. The
DNMT3 family of de novo methyltransferases
establishes DNA methylation patterns during early
development, whereas the maintenance methyltrans-
ferase DNMT1 preserves methylation patterns during
cell division by specific methylation of hemimethylated
CpG dinucleotides through an interaction with
ubiquitin-like protein containing PHD and RING
finger domains 1 (UHRF1) that recognizes
hemimethylated sites (41�44). De novo methylation
by the DNMT3 family of enzymes also contributes
to the maintenance of DNA methylation patterns
(45, 46).

In general, DNA methylation functions to stably
maintain the transcriptionally silent state of chroma-
tin; it is involved in fundamental processes such as
genomic imprinting, X chromosome inactivation and
repression of retrotransposons. Thus, DNA methyla-
tion is essential for development, and its dysregulation
is associated with cancer. DNA methylation interferes
with transcription in at least two distinct ways that
are likely to be biologically relevant. One mechanism
involves direct interference of the C-5 methyl group
with binding of proteins to their cognate DNA
sequences. A number of factors appear to bind
CpG-containing DNA sequences; some of these, such
as CCCTC-binding factor (CTCF) and lysine
demethylase (KDM) 2A, no longer bind to DNA
sequences when CpG is methylated (35, 47). The
other mechanism involves indirect interference via
recruitment of methyl-CpG binding proteins.
Proteins containing methyl-CpG-binding domains
(MBD) interact with components of complexes
that establish a repressive chromatin environment.
To date, five methyl-CpG binding proteins that con-
tain MBD domain have been identified: methyl-
CpG-binding protein 2 (MeCP2), MBD 1, MBD2,
MBD3 (mammalian MBD3 lacks the capacity to
selectively recognize methylated DNA) and MBD4.
In addition, Kaiso/ZBTB33, ZBTB4 and ZBTB38
are able to bind preferentially or specifically to
methyl-CpG, although they use zinc-finger (ZF)
domains to bind methylated DNA.
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Hydroxylation and a-KG�dependent
dioxygenases

Hydroxylation involves the introduction of hydroxyl
group(s) into various substrates, and is catalysed by
multiple types of hydroxylases (48). The source of
oxygen in the hydroxyl group can be derived from
molecular oxygen, water, or possibly some other
compound. When the oxygen atom is derived from
molecular oxygen, the reaction is catalysed by oxyge-
nases. A number of enzymes found in nature are
able to catalyse the activation of molecular oxygen
from the atmosphere, and use it to effect a wide variety
of reactions. These enzymes are divided into two
classes: oxidases and oxygenases (49). While oxidases
use oxygen as an oxidant and reduce molecular oxygen
to hydrogen peroxide or water, oxygenases incorporate
oxygen atoms from molecular oxygen directly into
the product(s). Oxygenases that catalyse the incorpor-
ation of hydroxyl group(s) into substrates as a result
of addition of oxygen are also known as hydroxylases.
There are two classes of oxygenases: monooxygenases
and dioxygenases. Monooxygenases catalyse an
addition of a single oxygen atom into the substrate,
whereas dioxygenases catalyse addition of two
oxygen atoms into the substrate or substrates (49).
Dioxygenases catalyse two distinct types of reactions:
the incorporation of both oxygen atoms from molecu-
lar oxygen into single substrate, and the separate
incorporation of these two oxygen atoms into both
substrate and co-factor such as a-KG (49). Recently,
the latter type of reaction has been demonstrated to
be involved in demethylation of histones and DNA
within chromatin (50�54).

Hydroxylation of both methylated histones and
DNA is facilitated by a-KG�dependent dioxygenases.
Sequence analyses have suggested that there are more
than 60 a-KG dioxygenases. These enzymes share
a ‘jellyroll’ structural fold comprised of eight b-strands
forming two four-stranded sides; they catalyse
hydroxylation as well as desaturation, cyclization,
ring expansion, epimerization and other chemical
transformations (49, 55). After the first discovery of
a-KG�dependent hydroxylase/dioxygenase, prolyl
4-hydroxylase, a number of enzymes have been identi-
fied (56). These enzymes catalyse the incorporation
of one oxygen atom from molecular oxygen into sub-
strate and another oxygen atom into a-KG, yielding
the hydroxylated product, succinate and CO2 (49, 57).
In addition to its role in chromatin demethylation, hy-
droxylation catalysed by a-KG�dependent hydroxy-
lase participates in a diverse range of biological
functions, including protein modifications, hypoxic
signalling, lipid metabolism and repair of alkylated
DNA/RNA.

Histone demethylation

A brief history of histone demethylation
Prior to the discovery of histone demethylases, histone
methylation was widely considered to be an irreversible
process. This notion largely arose from studies demon-
strating that histones and their methyllysine residues

have almost the same half-life (58, 59), although there
was some evidence that active turnover of methyl
group does take place at low levels (1�2%/h) (60).
The search for histone demethylases started in 1964
when Kim et al. reported an enzyme capable of
demethylating free mono- and di-N-methyllysine (61).
In 1973, the same group reported an enzymatic activity
that could demethylate histones, and subsequently
achieved a partial purification, although this enzymatic
activity was not characterized at the molecular level
(62, 63). These early studies implied the existence of
histone demethylases, yet the molecular identities of
these enzymes remained elusive the next three decades;
consequently histone methylation had been considered
as a ‘permanent’ epigenetic mark until the discovery
of a bona fide histone demethylase.

The first mechanism to be proposed for lysine
demethylation was amine oxidation. At the end of
2004, using a candidate approach, Shi et al. demon-
strated that the flavin monoamine oxidase KDM1A/
lysine-specific demethylase 1 (LSD1) specifically
demethylates H3K4me1/2 (64). KDM1A/LSD1 is a
flavin adenine dinucleotide (FAD)-dependent amine
oxidase, and as such can activate dioxygen, use it as
an oxidant, and then reduce it to hydrogen peroxide.
This discovery revealed that histone lysine methylation
is a reversible modification, like other covalent modi-
fications such as acetylation and phosphorylation.
KDM1/LSD1 family proteins catalyse the amine
oxidation of the methylated lysine, transferring two
hydrogen atoms from amine to FAD in order to
form the imine intermediate. This reaction reduces
co-factor FAD to FADH2, which is then reoxidized
by molecular oxygen, producing H2O2 (Fig. 1A).
The imine intermediate is hydrolysed via non-
enzymatic process to produce an unstable carbinola-
mine intermediate; subsequent spontaneous release
of formaldehyde generates demethylated lysine
(Fig. 1A).

However, this reaction mechanism is not compatible
with a trimethyllysine substrate, since the formation of
an imine intermediate via transfer of two hydrogen
atoms to FAD requires protonated nitrogen on the
"-amino group of lysine. Therefore, the reversibility
of trimethyllysine in histones remained unclear. In
addition, the number of KDM1/LSD1 family proteins
is limited, making it unlikely that these family proteins
would satisfy the enzymatic requirements to demethy-
late the diverse range of histone methylation status.
These observations raised the possibility that addition-
al demethylases may exist that use a different reaction
mechanism, leading to the discovery of another
demethylase family that employs distinct chemical
reactions.

JmjC domain-containing proteins catalyse histone
demethylation via hydroxylation of the methyl
group
Hydroxylation of the methyl group was the second
mechanism to be proposed for lysine demethylation.
At the end of 2005, using an unbiased activity-based
biochemical purification, Tsukada et al. identified
a Jumonji-like domain C terminus (JmjC) domain-
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containing protein, KDM2A/JmjC domain-containing
histone demethylase (JHDM) 1A, as a H3K36me1/
2-specific demethylase (50, 65, 66). KDM2/JHDM1 is
an a-KG�dependent hydroxylase/dioxygenase; as
noted above, such enzymes can activate molecular

oxygen and incorporate oxygen atoms into both
substrate and a co-factor, a-KG. KDM2/JHDM1
catalyses the direct hydroxylation of the methyl
moiety of methyllysine in a reaction that requires
Fe(II) and a-KG as co-factors (Fig. 1A). Reaction

A

B

Fig. 1 Overview of JmjC domain-containing histone demethylase family. (A) Hydroxylation-mediated histone demethylation catalysed by
JHDMs (top panel) and oxidation-mediated histone demethylation catalysed by LSD1 family proteins (bottom panel). For simplicity, only
Kme1 is illustrated. While the JHDM-mediated mechanism can be applied to Kme2/3, the LSD1 family-mediated mechanism cannot be used for
demethylation of Kme3. (B) Schematic representation of the mammalian members of the JmjC domain-containing family. Proteins whose
demethylase activity has been reported are shown in red. Synonyms, substrate specificity of demethylase activity, and phenotype of
enzyme-deficient mutants in vertebrates are indicated. Green dots represent three methylation states: mono-, di- and tri-methylation. Reference
numbers are in parentheses. CXXC, CXXC ZF domain; LRR, leucine-rich repeat domain, JmjN, Jumonji-like domain N terminus; C5HC2,
C5HC2 ZF domain.
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products are succinate, CO2 and an unstable carbino-
lamine; subsequent release of formaldehyde from the
carbinolamine produces demethylated lysine (Fig. 1A).
In this reaction, the co-factor�bound JmjC domain
contains the catalytic domain, and is thought to pro-
duce a highly reactive oxoferryl species that is required
for hydroxylation of substrate (Fig. 1B). The JmjC
domain was first noted in Jarid2 (Jumonji), Jarid1C
(Smcx) and Jarid1A (retinoblastoma-binding protein
2 (RBP2)), and defined as a domain shared by
a group of eukaryotic transcription factors, now
known as the KDM4 and KDM5 subfamilies (67).
Subsequently, another group found the JmjC domain
in a much wider set of proteins, and revealed that JmjC
domain-containing protein family is a branch of the
cupin metalloenzyme family (68). JmjC domain
adopts a ‘jellyroll’ fold consisting entirely of b-sheet,
similar to other members of the cupin superfamily
of metalloenzymes; the residues of the active pocket
in the interior of this jellyroll structural motif are
coordinated with Fe(II) and a-KG.

The human and mouse genomes each have 30
different proteins that contain a JmjC domain.
Information on the domain architecture of the
full-length protein and JmjC domain-based phylogeny
has defined seven subfamilies of these proteins (51).
So far a series of studies aimed at identifying histone
demethylases through sequence homology have shown
that 21 of these 30 proteins possess demethylase
activity toward H3K4, K9, K27, K36, R2, H4K20,
or R3, and that all subfamilies contain histone
demethylase; thus, JmjC-domain proteins constitute
the largest family of histone demethylases. Most
JHDMs, though not all, are able to demethylate tri-
methyllysine in histones; the hydroxylation-mediated
mechanism was initially proposed to be compatible
with a Kme3 substrate. Therefore, the discovery of
JmjC domain-containing demethylases revealed that
Kme3 can be demethylated; in other words, all states
of lysine methylation (mono, di, tri) are reversible
modifications.

Substrate specificity, functions and regulation of
JmjC domain-containing histone demethylases
A series of studies have shown that JHDMs possess
demethylase activity toward H3K4, K9, K27, K36, R2,
H4K20 and R3, although the activity toward methy-
larginine still remains to be established (69, 70).
JHDMs exhibit exquisite substrate specificity (site
and state). Such stringent specificity provides signifi-
cant insight into the function of histone demethylases.
JHDMs seem to rely on both the JmjC domain and
auxiliary domains found within each enzyme (such as
PHD domains) for their substrate specificity. The
determination of the JmjC-domain structure of four
JHDMs (KDM2A/JHDM1A, KDM4A/JHDM3A,
KDM7A/KIAA1718 and KDM7B/PHD finger 8)
has revealed that JHDMs use distinct strategies to
achieve state- and site-specificity in the demethylation
reactions (71, 72). JmjC domain adopts a jellyroll-like,
all b-strand fold; the enzymatically active pocket is
buried in the interior of this structural motif, where
it is coordinated with Fe(II) and a-KG. With regard

to state-specificity, JHDMs can be divided into two
classes: type-I enzymes have substrate specificity for
me1/2, and type-II enzymes are specific for me2/3.
These two distinct state-specificities arise from steric
hindrance in the catalytic active pocket, and the acces-
sibility of substrate methyl groups to the Fe(II) at
the active site. Type-I enzymes simply do not have
sufficient space in their active pocket to accommodate
a third methyl group; thus, they are unable to
demethylate trimethyllysine. In the type II-enzymes,
a network of hydrogen bonds (C�H . . .O type of
hydrogen bond that occurs in the active site of SET
domain (73)) between the methyl group of the sub-
strate and oxygen atoms of active pocket residues
places one of the three methyl groups of the trimethyl-
lysine close to the Fe(II), in an ideal position for ca-
talysis. When the degree of methylation decreased to di
and mono, the methyl group positioning becomes
less optimal. This model explains the state-specificity
of type-II enzymes, which do not demethylate mono-
methyllysine. It is interesting to note that, among
the JHDMs identified thus far, type-I enzymes have
aspartate as Fe(II)-binding site, whereas glutamate is
present at this position in type-II enzymes (74).
Important determinants of substrate site-specificity
include the local sequence at methylation sites, the
stability of interaction between JHDMs and the
peptide side chains of the substrate, and the auxiliary
functional domains of JHDMs.

Earlier studies of JHDMs focused on their activity
in vitro; more recently, however, the focus has shifted
to their cellular and physiological functions. Histone
methylation participates in the control of transcription
and chromatin architecture, as with other covalent
modifications of histones. Furthermore, the degree
of lysine methylation on nucleosomes and their relative
locations throughout the genome are related to
different functional outcomes. Therefore, histone
methyltransferases and demethylases play roles in
balancing methylation dynamics. In particular, given
that JHDMs have exquisite substrate specificity (with
respect to both site and state); JHDMs may provide a
mechanism for fine-tuning of the histone methylation
level. Since the discovery of the first JHDM, we have
learned that a number of JHDMs fulfil cellular and
physiological functions via control of gene-expression
programmes. Growing evidence from studies of
mammalian cell culture systems suggests that
JHDMs function in context-dependent tumour-
promotion and suppression, cell differentiation and
stem cell self-renewal (75, 76). Furthermore, studies
of the physiological function of JHDMs in model
vertebrates showed that JHDMs are emerging as
important players in developmental processes such as
germline and neuronal development, and implicated
them in diseases such as metabolic and neurological
disorders and cancer (77�90).

How are JHDMs regulated in the nucleus? Though a
number of JHDMs have been identified, the mechan-
isms that regulate their activities are largely unknown;
however, a few regulatory mechanisms have been
suggested: regulation of expression level, association
with chromatin and recruitment to target genes. In
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S. cerevisiae, the expression of the H3K4me3 demethy-
lase Jhd2 is tightly regulated by polyubiquitination/
proteasome-mediated degradation (91). Given that a
mammalian counterpart of Jhd2, KDM5C/SMCX/
JARID5C, is also targeted for polyubiquitination,
this mechanism seems to be conserved in higher organ-
isms (91). KDM7C/PHD finger 2 (PHF2), in which the
putative binding site of the Fe(II) co-factor contains
tyrosine instead of histidine, acquires the ability to
associate with chromatin upon phosphorylation by
protein kinase A; once on chromatin, PNF2 exhibits
demethylase activity toward H3K9me2 (92). The asso-
ciation of JHDMs with auxiliary factors also regulates
their activity by influencing enzyme recruitment to
target genes. KDM7C/PHF2 is recruited to its target
genes by association with AT-rich interactive domain
(ARID)-containing protein 5 (ARID5), which resides
in the co-activator complex for farnesoid X receptor
(92). Furthermore, KDM6A/ubiquitously transcribed
tetratricopeptide repeat (TPR) gene on the X chromo-
some (UTX) is associated with the mixed lineage
leukaemia (MLL) HKMT complex; KDM5A/RBP2
is associated with polycomb repressive complex
2 (PRC2) (93, 94). These enzymes may be recruited
to target genes by forming complexes with other fac-
tors. Auxiliary factors are not restricted to proteins
but may also include non-coding RNAs.

The discovery of JHDMs revealed that histone
methylation is a more dynamic process than previously
recognized, thereby providing an important conceptual
framework for understanding the regulation of histone
methylation in the cell. However, there are more than
24 methylation sites on histones, and the reversibility
of large portions of them, including H3K79me1/2/3,
H4K20me2/3 and arginine methylation, has yet to be
demonstrated (95). Determination of the reversibility
of each methylation sites will contribute to our under-
standing of the biological function of methylation,
both individually and overall. The study of JHDMs,
which began with the identification of enzymes, has
been making a shift toward the elucidation of the
regulatory mechanisms and biological functions of
these enzymes. Still, our knowledge regarding them
remains sporadic. Further study of these fascinating
enzymes in animal models will be required in order
to better understand their in vivo roles, and the roles
of histone methylation.

DNA demethylation

Potential mechanisms of DNA demethylation in
mammals
DNA methylation has been considered to be a stable
and mitotically heritable epigenetic modification.
However, DNA demethylation can arise either by
a passive mechanism (absence of maintenance DNA
methylation executed by DNMT1 during DNA repli-
cation) or by an active mechanism (DNA replication-
independent processes that produce unmethylated
DNA). The loss of 5mC has been observed both
genome-wide and at specific loci. Genome-wide DNA
demethylation occurs at two different stages of mam-
malian development: the migration of primordial germ

cells (PGCs) towards the genital ridge (96, 97), and
during early development before preimplantation
(96�98). In the former case, when germ cell fate is
established at E7.25, levels of genome-wide epigenetic
marks including DNA methylation are similar to those
in surrounding somatic cells. However, genome-wide
loss of 5mC has been observed in PGC by the time
they arrived at genital ridge (99�101). The erasure of
imprints, which is reflected by DNA demethylation
at the imprinted loci, occurs concomitantly with
demthylation of other regions (99). Given that DNA
demethylation of imprinted loci is a rapid process
that is completed within 1 day, and that PGCs have
undergone several cell cycles in the presence of
DNMT1, this demethylation is considered to be an
active process. The earliest phase of genome-wide
loss of 5mC during early development before implant-
ation is confined to the paternal pronucleus of the
zygote, beginning with sperm decondensation and is
marked in extent before first replication of DNA
(102, 103). Some genomic regions, such as imprinting
control regions (104), intracisternal A-particle (IAP)
retrotransposons (105), and centric and pericentric
heterochromatin (106, 107), are resistant to this loss
of 5mC in the paternal pronucleus. After the comple-
tion of the first cell cycle and until the morula stage,
there is a stepwise decline in methylation in the
early embryo, due to the absence of the maintenance
methyltransferase, DNMT1 in nucleus (96, 106�109).
These two phases of DNA demethylation, in the
paternal DNA before first DNA replication and in
the early embryo after the first cell cycle, were initially
termed ‘active demethylation’ and ‘passive demethyla-
tion’, respectively (102, 106, 107). On the other hand,
locus-specific DNA demethylation has been observed
in somatic cells, including neurons and T cells, that
respond to certain stimuli (110, 111). Locus-specific
DNA demethylation also participates in the nuclear
hormone-regulated activation of specific genes, such
pS2 and cytochrome p450 27B1 (CYP27B1)
(112�114).

The observation of active DNA demethylation—
combined with the notion that if there are DNA
methyltransferases that add a methyl group to cyto-
sine, there should also exist DNA demethylases that
remove this methyl group—prompted researchers to
search for DNA demethylases (115). The search for
DNA demethylases began in 1982 when Gjerset and
Martin reported an enzymatic activity that removed
methyl groups from DNA in murine erythroleukaemia
cells (116). More than a decade later, Weiss et al. also
detected DNA demethylase activity in rat myoblasts
(117). However no further characterization of these
putative enzymes has been reported. MBD2 was the
first protein reported to catalyse removal of a methyl
group by breaking a stable carbon�carbon bond (118).
This reaction is mediated by hydrolysis, does not
require any co-factor other than water, and produces
a methanol as its release product. However, this obser-
vation has not been replicated by other groups.
Furthermore, Mbd2-null mice are viable and fertile,
and have normal pattern of genomic methylation
(119). Importantly, MBD2 is not required for global
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demethylation of the paternal genome in zygotes (106).
Although most of the early reports of DNA demethy-
lases are controversial, studies performed over the past
5 years have proposed several potential mechanisms
for active demethylation, including a DNA
repair-based mechanism, a radical SAM-based mech-
anism, and a hydroxylation-mediated mechanism.

It has been proposed that active DNA demethyla-
tion might be accomplished through DNA repair
mechanisms, which involve two major pathways:
nucleotide excision repair (NER) and base excision
repair (BER). NER is generally used to repair a
bulky lesion in DNA. The nuclear protein growth
arrest- and DNA damage-inducible 45 alpha
(GADD45A), previously implicated in this process,
promotes global DNA demethylation, in conjunction
with its binding partner, NER endonuclease xero-
derma pigmentosum group G-complementing protein
(XPG) (120). However, this finding could not be
reproduced by another group, and Gadd45a-null mice
exhibit no change in either locus-specific or global
methylation levels (121, 122), although some reports
have supported a role for GADD45 family proteins
in locus-specific DNA demethylation (123, 124).

BER is the most versatile among excision repair
pathways, and is responsible for repairing most
endogenous base lesions, lesions generated by environ-
mental agents, and abnormal bases. Active DNA
demethylation can be achieved by BER pathways
either via initiation by direct excision or via deamin-
ation of 5mC. The direct excision of 5mC is well
established in DNA demethylation in plants.
5mC-specific DNA glycosylases (DEMETER (DME),
repressor of silencing 1 (ROS1), DEMETER-like
protein (DML) 2 and DML3) excise 5mC directly
and initiate BER (125). In contrast, no mammalian
orthologue of the ROS1 family of 5mC glycosylases
has been found, and only weak 5mC glycosylase activ-
ity can be detected for thymine-DNA glycosylase
(TDG) and MBD4 (126, 127). However, their
glycosylase activity against 5mC is stimulated by the
presence of both RNA and RNA helicase (TDG), and
by PKC-mediated phosphorylation (MBD4) (114,
126). In contrast to other DNA glycosylase-null
mice, which generally have mild phenotypes, Tdg-null
mice are embryonic lethal around E11.5, indicating
that TDG is essential for embryonic development
(128, 129). Tdg-null lineage�committed cells (mouse
embryonic fibroblast (MEF) cells and neuronal
progenitor cells) misregulate the expression of genes
that control developmental functions; most of these
genes have CGIs in their promoters and are targets
of the polycomb repressive system. The methylation
level of CGIs in the promoters of these genes is
increased in Tdg-null lineage-committed cells,
concomitant with the enrichment of H3K27me3.
Therefore, TDG seems to keep de novo DNMT activ-
ities in check in order to avoid erroneous methylation;
the engagement of X-ray repair complementing defect-
ive repair in Chinese hamster cells 1 (XRCC1) and
apurinic/apyrimidinic (AP) endonuclease 1 (APE1),
and the interaction of TDG with activation-induced
cytidine deaminase (AID) and GADD45A, suggest

that this enzyme operates through base excision
repair. On the other hand, Mbd4-null mice are viable
and fertile (130). The paternal pronucleus of Mbd4-
null zygotes exhibits normal global DNA demethyla-
tion (131), although MBD4 carries out active DNA
demethylation of the CYP27B1 promoter in response
to parathyroid hormone (114).

The deamination of 5mC to thymine initiates BER,
as T-G mismatch repair. Both cytidine deaminases and
DNMTs have been proposed to contribute to the con-
version of 5mC into thymine. AID and apolipoprotein
B mRNA editing enzyme, catalytic peptide 1
(APOBEC1) can deaminate 5mC with a strong prefer-
ence for single-stranded DNA (132). Aid-null embryos
exhibit some increase in the level of DNA methylation
in PGC, although the absence of AID still elicits
considerable DNA demethylation in PGC (133).
AID is required for the active DNA demethylation
of pluripotent genes during the artificial reprogram-
ming of fibroblast genomes by cell fusion with
mouse ESCs (134). However, neither Aid-null mice
nor Apobec1-null mice have obvious developmental
or reproductive defects (135�138). Surprisingly,
DNMT3A and DNMT3B, which catalyse methylation
of DNA, also possess deaminase activity, and partici-
pate in cyclical methylation and demethylation of
estrogen receptor target genes (113). However, the
deamination of 5mC can only occur when the concen-
tration of SAM is very low, raising a question about
whether such conditions could be physiologically
relevant. In this pathway, thymine glycosylases such
as TDG and MBD4 may function in T-G mismatch
repair, but there is no evidence that they recognize (or
use as substrate) the TG/GT double mismatches that
are generated from deamination of symmetrically
methylated CpG dinucleotides, repair of which would
cause double strand breaks.

In addition to enzymes that initiate BER, BER com-
ponents such as APE1, poly (ADP-ribose) polymerase
1 (PARP1) and XRCC1, which function in the process
after base excision, are also involved in active DNA
demethylation (139, 140). Chromatin-bound XRCC1,
which is a single-strand break (SSB) sensor protein,
is detected only in the zygotic paternal pronucleus,
concomitantly with the onset of zygotic paternal
DNA demethylation. Another SSB sensor protein,
PARP1, is also predominantly detected in the zygotic
paternal pronucleus. Treatment of zygotes with inhibi-
tors of key BER components, such as APE1 and
PARP1, result in a zygotic paternal genome with
significantly higher level of DNA methylation, suggest-
ing that the BER pathway participates in active
DNA demethylation. These BER components are
also up-regulated in E11.5 PGCs, compared with
neighboring somatic cells.

Okada et al. have proposed a model involving rad-
ical SAM-based demethylation mediated by the elon-
gator complex (141). To identify proteins involved in
zygotic paternal DNA demethylation, they first
developed a system to detect zygotic paternal DNA
demethylation using a probe that consists of the
Cys-X-X-Cys domain of MLL fused to enhanced
green fluorescent protein (EGFP). Given that the
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Cys-X-X-Cys domain of MLL has high affinity for
unmethylated CpG, DNA demethylation can be
detected as accumulation of the probe. Using this
monitoring system combined with knockdown of can-
didate genes, they identified Elp3, a component of
elongator complex, as a candidate. Knockdown of
Elp3 as well as that of other components of elongator
complex, Elp1 and Elp4 impedes DNA demethylation
in paternal genome. Furthermore, the requirement of
Fe-S radical SAM domain for DNA demethylation
suggests that radical SAM-based mechanism might
catalyse DNA demethylation via formation of
5-hydroxymethylcytosine (5hmC) as an intermediate
(142).

In addition to the mechanisms described above,
enzymatic hydroxylation of 5mC and its reaction
product, 5hmC, has been proposed to be involved in
active DNA demethylation as described later in detail.

TETs catalyse hydroxylation of 5mC
5hmC was initially identified in DNA from T-even
bacteriophages by the same group that first described
5mC in DNA (Fig. 2) (143). In the DNA of these
viruses, C is completely replaced by 5hmC and470%
of 5hmC is glucosylated by three different glucosyl-
transferases (144, 145). This DNA modification
system probably evolved for the protection of T-even
bacteriophage DNA from host restriction endonucle-
ases as well as their own encoded enzymes that degrade
host DNA (145). 5hmC exists in mammalian genomes

(146), but it is unclear whether it is present at physio-
logically relevant levels (147). Therefore, not much
attention was paid to mammalian 5hmC until two
recent studies addressed this issue (52, 148). These
two studies showed that 5hmC is indeed present in
mouse Purkinje neurons (0.6% of total nucleotides)
and ESCs (0.03% of total nucleotides) as a ‘sixth
base’; the authors proposed that 5hmC could be an
intermediate in active DNA demethylation.
Developing more sensitive methods for the detection
of 5hmC enabled its discovery in a wide spectrum of
mammalian tissues in levels between 0.03% and 0.69%
of deoxycytidine (149�151). Genome-wide distribution
of 5hmC in both mouse and human ESCs, analysed
by hydroxymethylated DNA immunoprecipitation fol-
lowed by next-generation sequencing (hmeDIP-seq),
has demonstrated that 5hmC is widely distributed
across gene-rich chromosomal domains, and enriched
in CpG-rich promoter regions, enhancers marked with
H3K4me1 and acetylated H3K27, and binding
sites for the insulator CTCF and transcription factors
associated with pluripotency, such as OCT4 and
NANOG (152�158).

The genome-wide distribution and relative stability
of 5hmC suggested a potential role for 5hmC beyond
that of intermediate in DNA demethylation. In a study
of an in vitro transcription system using the cyto-
megalovirus (CMV) promoter and a generic gene
body, the presence of 5hmC at the CMV promoter
strongly inhibited transcription in human nuclear
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extracts, although 5hmC in the gene body had negli-
gible effects on transcription; together, the data sug-
gest that 5hmC, like other modifications, contributes
to the recruitment or exclusion of factors that influence
transcription (159). As examples, transcriptional re-
pressors MeCP2, MBD1, MBD2 and MBD4 bind to
methylated DNA through their MBD domain, but do
not bind to 5hmC (160, 161). In contrast, an essential
factor in DNA maintenance methylation, UHRF1, can
bind to either 5mC- or 5hmC-containing DNA
through its SET and RING-associated (SRA)
domain (162). Proteins that specifically associate with
5hmC have not yet been identified.

The presence of 5hmC in mammalian DNA raises a
question about how this modified base is generated.
Although 5hmC could be produced by oxidative
DNA damage (163, 164), Tahiliani et al. demonstrated
the generation of 5hmC by enzyme-catalysed hydrox-
ylation of 5mC (52). The trypanosome genome
contains base J (b-D-glucosyl-hydroxymethyluracil),
which is related to gene silencing in manner analogous
to 5mC in mammals. Base J is a modified thymine
generated by sequential hydroxylation and glucosyla-
tion of the methyl group of thymine. The first step of
base J synthesis is catalysed by thymine hydroxylase,
J-binding protein (JBP) 1 and JBP2. Tahiliani et al.
envisioned an enzyme that would modify 5mC; in
2009, using a bioinformatics approach to search
for mammalian homologues of JBP1 and JBP2, they
identified human Ten-Eleven-Translocation 1 (TET1)
as 5mC hydroxylase (52). The human TET1, previ-
ously called LCX (leukaemia-associated protein with
CXXC domain), was originally identified as a fusion
partner of the MLL gene in an acute myeloid leukae-
mia (AML) patient; other members of the TET family
include the paralogous human proteins TET2 and
TET3 (165, 166). As with JHDMs, the TET family
members are Fe(II) and a-KG-dependent hydroxy-
lases/dioxygenases, and catalyse the same chemical
reaction (hydroxylation) to produce 5hmC (Fig. 2(I))
(52, 167). Even though TETs catalyse hydroxylation of
the methyl group, they do not produce unmethylated C
by themselves, unlike JHDMs, which can remove
the methyl group as a consequence of a reaction they
catalyse. In contrast to hydroxylation of the methyl
group in lysine, which generates an unstable carbino-
lamine intermediate from which methyl group
is removed as spontaneous release of formaldehyde,
hydroxylation of 5mC does not produce such an
unstable intermediate, and the hydroxymethyl group
stays in DNA as 5hmC (Fig. 2(I)). The different
outcome of these two reactions is probably due to
the distinct chemical bond used in histones (nitro-
gen�carbon bond) vs. that in DNA (carbon�carbon
bond) to link the methyl group. Recent studies
have revealed additional activities of TETs (168,
169), although earlier studies failed to detect such
activity. Thymine hydroxylases isolated from fungi,
such as Rhodotorula glutinis, Neurospora crassa and
Aspergillus nidulans, catalyse sequential conversion of
thymine to 5-hydroxymethyluracil, 5-formyluracil and
5-carboxyuracil (170, 171). This observation prompted
researchers to examine the possibility that TETs might

be able to convert 5mC not only to 5hmC, but also to
5-formylcytosine (5fC) and 5-carboxylcytosine (5caC).
Two groups demonstrated that TETs indeed possess
the ability to sequentially convert 5mC into 5caC
both in vitro and in vivo (Fig. 2(VI, VIII)), and that
5fC and 5caC (as well as 5hmC) are present in genomic
DNA under physiological conditions (168, 169, 172).
However, given that 5fC exists in genomes along with
the stable modification 5hmC, the in vivo regulatory
mechanisms of each of these three sequential reactions
still need to be elucidated (150, 168, 169). It is
noteworthy that 5caC cannot be distinguished from
C using bisulphite sequence analysis, since 5caC
behaves as C in bisulphite conversion (169).
Therefore, methods to distinguish between 5caC and
C need to be developed for future studies.

Possible involvement of hydroxylation of 5mC
in DNA demethylation and functions of TET
hydroxylases
Accumulating evidence indicates that TET-catalysed
hydroxylation of 5mC is involved in the process of
DNA demethylation; this implication has led to the
study of the physiological relevance of these proteins.
Widespread epigenetic reprogramming of PGCs,
including genome-wide DNA demethylation, occurs
at E11.5. Therefore, significant expression of Tet1
coincident with the transcription of BER components
in E11.5 PGCs implied that hydroxylation of 5mC by
TET1 might participate in active DNA demethylation
as well as the BER pathway (139). Tet1 is highly ex-
pressed in mouse ESCs, and is rapidly down-regulated
during their differentiation (52, 149). Chromatin
immunoprecipitation (ChIP)-seq analyses of TET1
have revealed a significant preference of TET1 for
CGI-containing gene promoters (153, 155, 173).
Unexpectedly, microarray and RNA-seq analyses in
Tet1-depleted mouse ESCs revealed that TET1 has
predominantly repressive, rather than activating,
effects on its direct target genes (153, 155, 156, 173).
Currently, however, TET1 binding alone is unable to
predict whether a gene is active or silenced. TET1
and TET2 are responsible for 5hmC production in
mouse ESCs (167, 174, 175), but the role of TET1 in
ESC self-renewal and maintenance of pluripotency
is controversial. While one study reported that
knockdown of Tet1 in mouse ESCs resulted in
down-regulation of Nanog expression, impairment of
ESC self-renewal, and maintenance of pluripotency
(167), other studies showed that knockdown of neither
Tet1 nor Tet2 affects Nanog expression, ESC
self-renewal, or pluripotency (153, 175). These differ-
ences might be attributable to the differences in the
ESC backgrounds and/or off-target effects of
shRNAs (153). In addition, depletion of Tet1 results
in differentiation patterns skewed toward trophoecto-
derm, primitive endoderm, and endoderm lineages,
both in vitro and in a teratoma formation assay (167,
175). Although the studies utilizing knockdown
approaches to reduce the expression of Tet1 collective-
ly suggest a potential requirement for TET1 in
maintenance of pluripotency and normal development
(167, 175), the study of Tet1-null ESCs and mice
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has indicated that TET1 is dispensable for ESC main-
tenance, and that its loss is compatible with embryonic
development and post-natal survival. The generation
of viable Tet1 knockout mice provides a possible ex-
planation for the observed defect in lineage specifica-
tion due to loss of TET1. Tet1-depleted ESCs exhibit
skewed differentiation under non-physiological condi-
tions, e.g. in teratoma or in vitro embryoid body
assays, but such defects in lineage specification are
less pronounced in the context of an embryo and are
compatible with embryogenesis. Although the gener-
ation of viable and fertile Tet1-null mice unequivocally
indicated that TET1 deficiency does not prevent
embryonic or post-natal development, the average
litter size of homozygous parents seems to be smaller
than wild type, and homozygous mutant pups have a
slight reduction in body size and weight. Therefore,
further study is required in order to determine the
role of TET1 in active DNA demethylation in PGCs,
gametogenesis, fertility and embryonic development.
It has also been suggested that TET1 participates
in neuronal activity-induced, locus-specific DNA
demethylation in the dentate gyrus of the adult
mouse brain in vivo (176).

Although Tet2 is expressed, and together with Tet1
is responsible for 5hmC production in mouse ESCs,
TET2 does not seems to play a significant biological
role in ESCs (167, 175). However, among all three TET
family members, TET2 is most frequently mutated in
myeloid malignancies (177). The overall mutation
rate is 19.5%, but the frequency of mutations varies
between different diseases, including myelodysplastic
syndromes (MDS), myeloproliferative neoplasm
(MPN), chronic myelomonocytic leukaemia
(CMML), AML and secondary AML (sAML) (177,
178). RNAi-mediated depletion of Tet2 in mouse
hematopoietic precursors results in differentiation pat-
terns in culture that are skewed towards monocyte/
macrophage lineages, indicating that TET2 is import-
ant for normal myelopoiesis (178). The TET2
mutations associated with myeloid malignancies
impair enzymatic activity and are associated with
global hypomethylation (rather than the expected
hypermethylation) at differentially methylated CpG
sites (178). Further study of the role of TET2 in hem-
atopoietic cells will reveal the function of 5hmC in
DNA demethylation and the relationship between
DNA methylation changes and myeloid neoplasia.

It has also been suggested that hydroxylation of
5mC is involved in genome-wide DNA demethylation
in the paternal genome of the zygote. Immunofluo-
rescence analyses using antibodies against 5hmC
showed that the appearance and accumulation of
5hmC in the paternal genome coincide with loss of
the signal for 5mC and that 5hmC signal persists
during cleavage stage of embryos, suggesting that the
genome-wide loss of 5mC is attributable to the conver-
sion of 5mC to 5hmC (53, 179). Consistent with the
passive DNA demethylation of maternal DNA in early
embryo, 5hmC generated in paternal DNA is lost by
a DNA replication-dependent passive process in the
cleavage stage (180). The expression of the three TET
hydroxylases/dioxygenases is differentially regulated

during early development. While Tet3 is expressed in
the oocyte and zygote and is suddenly down-regulated
at the two-cell stage (53, 179), Tet1 and Tet2 are
mainly expressed in the inner cell mass (167, 174),
indicating that the conversion of 5mC to 5hmC in
the zygotic paternal pronucleus is catalysed by TET3.
To study the physiological role of TET3, conventional
and conditional knockout (CKO) mice of Tet3 were
generated (54). Female CKO mice, in which
germline-specific deletion of Tet3 from PGC has been
achieved, are normal in growth and morphology.
Mating between CKO female and wild-type male
mice produces zygotes in which neither the appearance
of 5hmC signal nor the loss of 5mC signal from pater-
nal DNA is observed. In contrast, zygotes generated
by the converse mating do not exhibit such a change.
Thus, the genome-wide loss of 5mC in the zygotic
paternal genome is attributable to the hydroxylation
of 5mC into 5hmC by maternal TET3. In addition,
deletion of Tet3 from the female germ cells impairs
DNA demethylation at Line1 and octamer-binding
transcription factor 4 (Oct4) in the paternal genome,
and impedes expression of Oct4 derived from paternal
DNA in the early embryo. Female CKO mice do not
show obvious defects in epigenetic reprogramming in
embryonic germ cells, oocyte development, maturation
and fertilization. However, their fecundity is signifi-
cantly lower, both in terms of frequency of successful
pregnancy per mating and litter size. Tet3 (Mat�/Patþ)
mutant embryos exhibit a high frequency of degener-
ation and morphological abnormalities, starting
from midgestation. Further study will reveal the role
of 5mC hydroxylation in the zygotic paternal genome.
On the other hand, conventional homozygous muta-
tion of Tet3 results in neonatal lethality (54), indicating
that TET3 might have roles in the embryo as well as
the oocyte and zygote.

Accumulating evidence strongly supports the idea
that hydroxylation of 5mC to 5hmC, catalysed by
TET hydroxylases/dioxygenases, participates in both
genome-wide and locus-specific DNA demethylation.
However, several pathways from 5hmC to C have been
proposed, as follows (Fig. 2). A few reports support
a direct conversion of 5hmC into C (Fig. 2(II)). When
5hmC is exposed to UV radiation, very efficient
generation of cytosine is observed, suggesting a
plausible mechanism for conversion of 5hmC into C:
photochemical hydration of 5hmC followed by elimin-
ation of formaldehyde (181). It has also been noted
that 5-hydroxymethylpyrimidine derivatives prepared
with radioactively labelled formaldehyde lose their
label when stored in or expose to alkaline solution,
indicating that the hydroxymethyl group is removed
from 5-hydroxymethylpyrimidine derivatives as
formaldehyde under high pH (182, 183). On the
other hand, DNA cytosine-5-methyltransferases
(C5-MTases) could catalyse the removal of formalde-
hyde from 5hmC and thereby generate C (184).
Thus, these reports suggest that 5hmC could be
directly converted into C through loss of formalde-
hyde, either upon exposure to ultraviolet light or
high pH, or by C5-MTases (Fig. 2(II)). 5hmC may
be an intermediate in the conversion of 5mC to C via
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the BER pathway (Fig. 2(III�X)), since BER compo-
nents that function in the process after base excision
are involved in DNA demethylation (139, 140, 176).
The generation of an AP site to initiate BER could
be achieved in several ways (Fig. 2(III�IX)). Given
that 5hmC-specific DNA glycosylase activity exists in
calf thymus extracts (185), it might be possible that
excision of 5hmC by a 5hmC-specific DNA glycosylase
initiates BER, as in plant (Fig. 2(III)). Several lines of
evidence support the possibility that 5hmC may be de-
aminated into 5hmU by AID/APOBEC deaminases,
followed by excision by 5hmU glycosylases such as
single-strand uracil DNA glycosylase (SUMG1) and
TDG, in order to initiate BER (Fig. 2(IV, V, and
X)). First, AID/APOBEC deaminases facilitate 5hmC
demethylation as well as deamination to convert 5hmC
into 5hmU (176). Second, 5hmU can be excised by
5hmU glycosylases, TDG and SUMG1 (129, 176).
Finally, TDG interacts with AID and functions in a
process that engages APE1 and XRCC1 (128, 129).
TETs catalyse a consecutive oxidation of 5hmC to
5fC and 5caC, and TDG can excise both of 5fC and
5caC (Fig. 2(VI�IX)) (168, 169, 186). Therefore, it may
be possible that further oxidation of 5hmC followed by
excision of oxidation products by TDG initiates BER
(Fig. 2(VI�X)). The conversion of 5hmC into C could
be achieved by TET-catalysed sequential oxidation of
5hmC into 5caC, followed by decarboxylation by a
putative decarboxylase (Fig. 2(XI)). Although a simi-
lar process that converts thymine to uracil exists in
fungi (170, 171), an enzyme capable of decarboxylating
5caC in DNA has yet to be identified.

The rediscovery of 5hmC, and the identification of
TETs that catalyse the hydroxylation of 5mC, provide
an important advance in understanding of DNA
demethylation. Although there is not yet a consensus
on the mechanism of active DNA demethylation
in mammals, accumulating evidence suggests that
hydroxylation of 5mC and BER may be involved.
However, these mechanisms generate many pyrimidine
derivatives in DNA, including, 5fC, 5caC and 5hmU.
Therefore, further study will require development of
methods to distinguish these pyrimidine derivatives,
in addition to C, 5mC and 5hmC. Besides the mech-
anism, the precise timing and extent of genome-wide
DNA demethylation also remains unclear.
Genome-wide profiling of the pyrimidine derivatives
involved in the process will capture the entire picture
of genome-wide DNA demethylation, and thereby
contribute to our understanding of its mechanism.

Conclusion

Recent advances have revealed that demethylation of
both histones and DNA in chromatin employs the
same chemical reaction, hydroxylation, which is cata-
lysed by Fe(II) and a-KG-dependent hydroxylase/
dioxygenase: JHDMs and TET hydroxylases/
dioxygenases. These enzymes are now emerging as
important players in development, and are linked to
human diseases. In addition to the direct removal of
the methyl group from histones, mechanisms for the
active turnover of methyl groups on histones and for

antagonizing the effect of histone methylation have
been proposed; these include clipping of methylated
histone tails, replacement of methylated histones with
unmethylated histones, a ‘binary switch’ model in
which the effect of methylation is counteracted by
another histone modification, and antagonizing
methylation on arginine residues by converting
monomethyl-arginine in histone to citrulline (65).
The existence of these multiple mechanisms suggests
that histone demethylation utilizes each mechanism
in a context-dependent manner. In mammals, although
several mechanisms have been suggested, the specific
mechanisms by which DNA demethylation is accom-
plished remain elusive and highly debated. Given that
methylation of chromatin contributes to fundamental
processes such as establishment of cell identity in
multicellular organisms, further study will provide us
with a better understanding of epigenetic regulation,
reprogramming, and disease, and therefore has
implications for regenerative medicine and human
health.
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